
Annual Report for Contract Number N00014-88-K-0641

For the period: 1 October 1987 - 30 September 1988 D TIC
IEL.ECTE Now

AD-A248 600 5APRI 31992

ApPIll lllll~lll11111 IiC ru Cse

...... i 9 2 -0 7 3 6 2
9-2--- 2--- 107 eIIIEIUInIeIII;IIIi92 4*1 2,3 10 7 I IllMIII

J "- w

ONR Graduate Fellowship
N00014 - 88 - K - 0641
Dr. Andre van Tilborg

Mir6 Research Description
Mark Maimone

1 Introduction

The heart of the proposed research lies in the formal specification of complex software systems.
We are interested in specifying not just the functional correctness of a system, but also its
behavior imposed by concurrency, fault-tolerance, security, and real-time constraints. Current
specification techniques are inadequate for describing such behavior for realistic, large-scaled
systems. We need to combine isolated research results from the areas of formal specifications
and formal models of concurrency, and more significantly, to extend them in order to specify
properties that are as critical as functional correctness.

The novel aspect of this research is to exploit the benefits of visual languages to specify
system behavior. We intend to design a visual specification language; to give a formal semantics
to the language; to build a rich set of tools for presenting and manipulating visual specifications;
and to demonstrate the suitability of the language to the specification of a wide class of system
properties.

2 Language Design and Semantics

Our present design allows users to draw different types of bozes and arrows, in the formation of
pictures. A box denotes a set of objects and an arrow between boxes denotes a relation which
holds between the objects in those boxes. The same visual notation may be given different
interpretations depending on the application domain of interest. The picture below, interpreted
in the security domain, shows three boxes denoting sets of users, two boxes denoting sets of
files and three arrows denoting different access right relations.

WINS. '2RI&I
DlTIC ?LB0
h, .:LtzlanOed [

1 gDistribulL Isn/
Av~ilability Codee

Statement A per telecon v a

Dr. Andre Van Tilborg ONR/Code 1133 Dist I Spoolal

Arlington, VA 22217-5000

NWW 4/10/92 .. .

employee
adm

Here all employees have read access to administrative files, some managers have write
access to salary files and no non-manager has any kind of access to salary files (assuming
that the cable represents any access type). There are still many open language design issues
including: finding appropriate visual notation for data types, eliminating naming problems
(such as aliasing), representing infinite and non-planar structures and resolving ambiguities,
such as those that arise through the use of "negative" arrows.

To give the language formal semantics we rely on the mathematical notions of Venn dia-
grams and graphs. We intend to factor out that part of the semantics which is common to
all domains from the domain-specific parts. For example, in the above picture under a shared
memory model of concurrent processing, one can interpret the boxes on the left as sets of
processes, the boxes on the right as shared objects, and the arrows as operation invocations.
I am developing semantics for the language, initially in its application to the security domain.
These semantics are sufficient to recognize the cases of ambiguity that can arise in a well-
formed picture. An interesting open semantic issue is how to define the semantics of our visual
language in a visual way, rather than denotationally as we now do.

3 Future Work

I intend to develop futher the formal semantics for Mir6, to influence the language design.
and to provide specific tools for language users. I will present a summary of semantic results
at the IEEE Visual Language Workshop this October, and have been asked to submit these
results for publication in the IEEE "plenum" volume on visual languages. The language has
already evolved beyond the current level of the formal semantics, as it now includes a constraint
language for pictures. I will develop rigorous semantics for these constraints, and intend to
apply to language to domains outside of security.

"6,2

'Mir6 Visual Specification Language Mir6 Project Goals:

* Named after Joan Mir6 (1893 - 1983), o Visual Language Design
Spanish artist -. Formal Language Semantics

o Software Tools (editor, semantics checker)

o Applications: Security, Concurrency

Security Application:

. Language consists of boxes and arrows
(Venn diagrams, relations between users
and files)

o Access Matrix is the underlying model

.,roposed Software Tools Personal Achievements:

I Editor - create/modify Mir6 o Formal semantics for a subset of the
specifications; will be based on the language
GARNET project (device-independent e Presentation of semantic results at IEEE
graphical application package) Workshop

* Syntax Checker - verify well-formedness o Preliniary work on editor tool
constraints

o Picture Inference - build a Mir6 picture
from an existing file system

o Enforcer - make the current file system
conform to the Mir6 specification

The editor and a Postscript tool are being
developed now.

A Simple Mir6' Picture..

=Univerise

Aletp Writ / usr/ Alice/ privat
read writ executeRead wieexct

bo ~B pob D e e Ime e e

halie poe meg eg Pe neg neg

bo o eg ng ng e e

4/

Stewart M. Clamen
clamen@cs.cmu.edu

Contract # NOOOM-88-K-0641
Dr. Andrd Van Tilborg (Supervisor)

FY88 Summary Report

Project Goals

A distributed system consists of multiple computers (called sites) that communicate
through a network. Distributed systems are typically subject to site crashes and communi-
cation link failures. A crash renders a site's data temporarily or permanently inaccessible,
while a communication link failure causes messages to be lost. A failure is detected when
a site that has sent a message fails to receive a response after a certain duration. The
absence of a response may indicate that the original message was lost, that the reply was
lost, that the recipient has crashed, or simply that the recipient is slow to respond.

The goal of Avalon is to create a set of linguistic constructs desiged to give
programmers explicit control over transaction-based processing of atomic objects for fault-
tolerant applications. These constructs are being implemented as as extensions to C++,
Common Lisp, and AdaTM. The constructs include now encapsulation and abstraction
mechanisms, as well as support for concurrency and recovery, The decision to extend an
existing language rather than to invent a new one was based on pragmatic considerations.
We felt we could focus more effectively on the new and interesting issues of reliability
and concurrency if we did not have to redesign or reimplement basic language features,
and we felt that building on top of a widely-used and widely-available language would
facilitate the use of Avalon outside our own research group.

We are currently implementing Avalon/C++, superset of C++, augmented by prim-
itives that support distribution, concurrency, reliability' and fault-tolerance. C++ was
chosen over C bccause its object-oriented style of programming lends itself well to a
distributed programming approach. The Avalon run-time system relies on two systems
currently under development at CMU. Mach, a Unix-like operating system with support
for-distributed computation, is used to provide communication among the various Avalon
processes, and to support process-level concurrency. Camelot, a machine-independent,
hlgh-performance, distributed transaction facility, is used to support the fault-tolerance
and reliability we desire.

Past Accomplishments

The preliminary Avalon/C++ language design is complete, and we have nearly completed
our work on a' preprocessor to translate Avalon/C++ code to C++ code. The parser
and type checkers are working, and the compiler's semantic phase, which transforms
Avalon constructs into calls, to the Camelot distributed transaction primitives and the
Mach communication primitives, is nearly complete. The only remaining major portion
of the system that has yet to be integrated is the facility for starting servers from within
user programs; a facility which will be incorporated in the very near future.

My own work has focused on the Avalon/C++ communication mechanisms. Com-
munication among the various processes that make up an Avalon/C++ application is
achieved via a Remote Procedure Call (RPC) mechanism. In this way, the actual (net-
work message) transmission of values between the two communicating processes (client
and server) is masked by a traditional programming construct. For an RPC to operate
correctly, the system must be able to translate the abstract representation of the arguments
and return values into and out of some transmissable representation. In an effort to fur-
ther conceal this message transmission from the programmer, Avalon/C++ automatically
generates these translation routines. A preliminary version of the communication support
is mostly done, its completion hinging on the the repair of a deficiency in the underlying
Mach system.

Future Goals

This fall will see the integration of the support for remote server initialization into our
existing Avalon/C++ compiler. Much energy will be spent removing any remaining bugs
in the system, and there will be efforts to reduce the size of the resulting application
programs.

Over the next year, I also plan to investigate Avalon/Lisp, an extension of Common
Lisp to support reliable distributed programs. One possible application of Avalon/Lisp is
the management of large, long-lived knowledge bases. The Avalon primitives could be
used for replication, to ensure that the data remains highly available, and for reliability,
ensuring that site crashes do not cause the data to become lost or inconsistent. The Lisp
model permits several novel approaches to managing large objects, including sending
procedures to data rather than the other way around. Because of its interactive nature,
Avalon/Lisp promises to be an effective testbed for rapid prototyping of reliable distributed
systems.

The major issue in this investigation will be to determine an appropriate model of
concurrency.' Concurrency in Lisp has been modeled in a number of ways over the past
several years. Futures (as implemented in Halstead's Multilisp) and Qlisp (as developed

2

by McCarthy and Gabriel) are but two examples, Some experimentation will be necessary
to determine which model would lend itself best to a distributed environment. Another
important issue is the form exceptions and exception handling should take in a Lisp
environment, an issue that has not been the object of much research. Exception handling
is a particularly important issue in a distributed system where programs must be designed
to tolerate failures.

Stewart Clamen

clamen@cs.cmu.ed.

3

Avalon Project Design Goals: Past Achievements:
What are the right primitives and Implementation of Avalon/C++ as a

preprocessor for C++. Personal projects as
language extensions? part of implementation include:

e Are the right primitives fast enough?

* Do the language extensions match the o Automatic generation of code for
transmission of arguments to remote

existing programming paradigm? procedures (RPCs).

* What is the program supposed to do? Can Support for tracing ofoon rv i7•Sppr o taigo server operations.
one prove it? (Debugging Support)

o What neat algorithms can one implement e Development of Avalon/C++ example:
in the new language(s)? Atomic Counter (supporting concurrent

Increment, decrement, and test-for-zero
operations).

Short- to Medium-Term Objectives: Approach:
Debug Avalon/C++ implementation.

1. Examine possible semantics for
Design of reliable, distributed computing Examo sibc

environment for CommonLisp (Avalon/Lisp). Avalon/Lisp:

e Explicit (user-controlled) vs. implicit
(automatic) transaction processing,

* Explicit vs. implicit recoverability of
program data and code,

* Methods for exception handling.

2. Model various approaches to assist in
examining differences. Critical
differences include: ease of programming,
similarity to programming models, etc.

I

--- ":"Avalon/C++ Type Hierarchy

class recoverable I

class atomic class subatomic

Class Hierarchy Detailed

class recoverable
public:
virtual void pino);
virtual void unpin();

class atomic: public recoverable class subatomic: public recoverable
public: protected:
virtual void write lock(; void seizeo;
virtual void read-locko; void release);

void pause);
public:
virt'ual void commit(transid& t);
virtual void abort(trans id& t);

1;

